Атомные электростанции принцип работы кратко. Атомная электростанция. История совершенствования типов ядерных реакторов

Как работает, например, гидроэлектростанция? Здесь все просто. Строится плотина, создается большой водоем, потоки воды под давлением вращают вал генератора, который вырабатывает электроэнергию. Как устроены ветряные электростанции? Тут все намного проще! Ветер крутит большие лопасти, которые вращают вал генератора, получается электричество. А какой принцип работы атомной электростанции? Оказывается, большинство людей вообще не понимают, как получают электроэнергию с помощью атомных реакторов. Для многих, это будто некая магия, что-то такое происходит в атомном реакторе, откуда получается электрический ток.

Считаю, что это несправедливо, люди должны знать, как работают атомные электростанции, потому что все намного проще и понятнее чем может показаться. О принципах работы атомной энергетики расскажу на примере Нововоронежской АЭС.


Итак, атомная станция со стороны выглядит как многие промышленные предприятия с техническими корпусами, кранами и трубами. Заметное отличие заключается в больших градирнях, из которых выходят большие клубы пара. Хотя градирни есть и на обычных теплоэлектростанциях, так что АЭС легко можно не опознать.

Переходим к самой известной по фильмам и фотографиям части АЭС — щиту управления.
Это блочный щит управления 4-м энергоблоком Нововоронежской атомной станции, запущенным в 1972 году. Здесь используется реактор ВВЭР-440 мощностью 400 МВт.

Нововоронежская АЭС — одна из первых атомных электростанций СССР и первая в мире атомная станция с водо-водяным энергетическим реактором. АЭС снабжает около 20 предприятий и более 2 миллионов жителей Центрально-Черноземного региона, а также на 85% обеспечивает Воронежскую область электричеством.

Всем известная «круглая штука с ромбиками» является разрезом активной зоны реактора. Красным показаны регулирующие стержни, белым — тепловыделяющие сборки. Если коротко и грубо, то атомный реактор представляет из себя большой вертикальный цилиндр, внутри которого располагаются стержни из ядерного топлива и контролирующие стержни.

Энергоблоки 3 и 4 были построены в начале 1970-х годов и должны были закончить работу еще в начале 2000-х годов, но позже срок их эксплуатации продлили. С прошлого года проводится активная модернизация.

Всего за историю Нововоронежской станции было 6 энергоблоков, первый из которых пущен в 1964 году, а шестой — в 2016 году. Седьмой энергоблок сейчас строится, а первый и второй уже выведены из работы.

Самая верхняя часть реактора, крышка напоминает большой колокол, а сами стержни находятся глубоко внизу. Это реакторное отделение 3-го и 4-го энергоблоков, а подобная смотровая площадка существует только на Нововоронежской АЭС. Да, именно так, можно сказать, выглядит снаружи атомный реактор.
Немного позади крышки располагается устройство для замены стержней, которое подъезжает сверху, когда крышку открывают, и производит работу внутри.

Блочный щит управления 5-м энергоблоком, построенным в 1980 году. Здесь используется реактор ВВЭР-1000 мощностью 1000 МВт.

Энергоблок должны были вывести из работы в 2010 году, но позже срок продлили.
С 1995 года Нововоронежская АЭС осуществляет модернизацию энергоблоков для приведения их в соответствие с современными стандартами безопасности.

Поскольку энергоблок и щит управления более новые, то и разрез активной зоны реактора тоже отображается уже не в аналоговом виде, а на мониторе компьютера в режиме реального времени. Можно наблюдать температуру и многие другие параметры.

Самая главная кнопка, которая полностью отключает реактор при возникновении самых страшных аварийных ситуаций. Пожелаем сотрудникам АЭС, чтобы подобных аварий никогда не происходило, а эта кнопка всегда оставалась запечатанной.

Во многих местах и помещениях станции находятся специальные устройства, измеряющие уровень радиации — счетчики Гейгера или дозиметры.

Пятый энергоблок Нововоронежской АЭС снаружи выглядит как цилиндр. Внутри необычного здания находится сам атомный реактор, окруженный специальной защитной цилиндрической оболочкой из железобетона. После ремонта и модернизации в 2011 году он снова введен в эксплуатацию, его мощность 1000 МВт.

А теперь главный вопрос: зачем вообще нужен реактор, как из всего этого получается электричество?
В реальности все оказывается не так «магически», как вероятно хотелось бы. Атомный реактор является фактически большим кипятильником, который нагревает воду.

После нагревания вода направляется к другому замкнутому контуру с водой, которая уже превращается в пар. Этот пар крутит большую турбину, приводящую в движение генератор, который вырабатывает электроэнергию.

В общем, все просто: реактор нагревает, вода/пар крутит генератор, получается электричество.
Машинный зал 5-го энергоблока.

Нагретую воду необходимо дальше куда-то направить и охладить, для этого придумали целые охладительные башни — градирни. Вода закачивается насосом наверх, а потом падает вниз, дробясь на мелкие капельки в оросителе. Снизу подается поток воздуха, который испаряет часть воды, а часть просто охлаждается и падает вниз.
Это градирни 3-го и 4-го энергоблоков высотой 95 метров.

Комплектное распределительное устройство предназначено для приема, распределения и передачи электричества. Грубо говоря, большой трансформатор. Внутри специальных труб находятся линии электропередач, все надежно и безопасно.
Это КРУЭ шестого энергоблока Нововоронежской АЭС.

Центральный щит управления 6-го энергоблока, который на данный момент является самым мощным атомной энергетике России — 1200 МВт. Построен по технологиям безопасности, ставшим актуальными после аварии на Фукусиме. Тип атомного реактора ВВЭР-1200.

Шестой энергоблок с улицы выглядит не так инфернально как цилиндр пятого, но по верхней части с трубами можно узнать. В августе 2016 года энергоблок был включен в сеть и выдал первые 240 МВт в энергосистему. На данный момент, это самый высокотехнологичный энергоблок в России, соответствующий самым современным требованиям надежности и безопасности.

Брызгальные бассейны 6-го блока, которые нужны для охлаждения систем потребления реактора. На заднем плане здание шестого энергоблока, градирни 6-го и строящегося 7-го энергоблока, и сама стройка.

Седьмой энергоблок будет близнецом шестого, завершение строительства намечено на 2018 год. Энергоблок будет устойчив к землетрясениям, ураганам, наводнениям, взрывам, даже падению самолета. Типа реактора ВВЭР-1200.

Турбинный зал 6-го энергоблока.

Срок службы основного оборудования блока теперь составляет 60 лет, а не 30 лет, как было на старых энергоблоках.

Градирни 6-го и 7-го энергоблоков намного больше и выше старых, их высота 171 метр.

Теперь вместо двух градирней на энергоблок используется одна, но большего размера. Это позволило уменьшить площадь самой атомной станции, сократить расходы материалов и средств.

Пункт управления 6-го энергоблока. В полную промышленную эксплуатацию энергоблок запланировано принять в конце 2016 года после проведения различных испытаний.

Большое спасибо лично

Атомная энергетика - одна из самых развивающихся областей промышленности, что продиктовано постоянным ростом потребляемой электроэнергии. Очень многие страны имеют свои источники выработки энергии при помощи «мирного атом».

Карта атомных электростанции России (РФ)

Россия входит в это число. История АЭС России начинается с далекого 1948 года, когда изобретатель советской атомной бомбы И.В. Курчатов инициировал проектирование первой атомной электростанции на территории тогда еще Советского Союза. Атомные станции России берут свое начало с постройки Обнинской АЭС, которая стала не только первой в России, но первой в мире атомной станцией.


Россия уникальная страна, которая обладает технологией полного цикла атомной энергетики, что подразумевает под собой все этапы, от добычи руды до конечного получения электроэнергии. При этом благодаря своим большим территориям, Россия обладает достаточным запасом урана, как в виде земных недр, так и в виде оружейного оснащения.

На настоящий момент ядерные электростанции в России включают в себя 10 действующих объектов, которые обеспечивают мощность в 27 ГВт (ГигаВатт), что составляет примерно 18% в энергетическом балансе стране. Современное развитие технологии позволяет сделать атомные электростанции России безопасными для окружающей среды объектами, несмотря на то, что использование атомной энергии является наиболее опасным производством с точки зрения промышленной безопасности.


Карта ядерных электростанции (АЭС) России включает в себя не только действующие станции, но также строящиеся, которых насчитывается порядка 10 штук. При этом к строящимся относятся не только полноценные атомные станции, но также перспективные разработки в виде создания плавучей атомной станции, которая отличается мобильностью.

Список атомных электростанций России имеет следующий вид:



Современное состояние атомной энергетики России позволяет говорить о наличии большого потенциала, который в обозримом будущем может реализоваться в создании и проектировании реакторов нового типа, позволяющих вырабатывать большие объемы энергии при меньших затратах.

Все очень просто. В ядерном реакторе распадается Уран-235, при этом выделяется огромное количество тепловой энергии, она кипятит воду, пар под давлением крутит турбину, которая вращает электрогенератор, который вырабатывает электричество.

Науке известен по крайней мере один ядерный реактор естественного происхождения . Он находится в урановом месторождении Окло, в Габоне. Правда, он уже остыл полтора миллиарда лет назад.

Уран-235 - это один из изотопов урана. Он отличается от простого урана тем, что в его ядре не хватает 3 нейтронов, из-за чего ядро становится менее стабильным и распадается на две части, когда в него на большой скорости врезается нейтрон. При этом вылетает еще 2–3 нейтрона, которые могут попасть в другое ядро Урана-235 и расщепить его. И так по цепочке. Это называется ядерной реакцией.

Управляемая реакция

Если не управлять цепной ядерной реакцией и она пойдет слишком быстро, то получится самый настоящий ядерный взрыв. Поэтому за процессом надо тщательно следить и не давать распадаться урану слишком быстро. Для этого ядерное топливо в металлических трубках помещают в замедлитель - вещество, которое замедляет нейтроны и переводит их кинетическую энергию в тепловую.

Для управления скоростью реакции в замедлитель погружают стержни из поглощающего нейтроны материала. Когда эти стержни поднимают, они улавливают меньше нейтронов и реакция ускоряется. Если стержни опустить, то реакция опять замедлится.

Дело техники

Огромные трубы в атомных электростанциях на самом деле никакие не трубы, а градирни - башни для быстрого охлаждения пара.

В момент распада ядро раскалывается на две части, которые разлетаются с бешеной скоростью. Но далеко они не улетают - ударяются о соседние атомы, и кинетическая энергия превращается в тепловую.

Дальше этим теплом нагревают воду, превращая ее в пар, пар крутит турбину, а турбина крутит генератор, который и вырабатывает электричество, точно так же, как в обычной тепловой электростанции, работающей на угле.

Смешно, но вся эта ядерная физика, изотопы урана, цепные ядерные реакции - все для того, чтобы вскипятить воду.

За чистоту

Атомная энергия используется не только в атомных электростанциях. Существуют корабли и подводные лодки, работающие на ядерной энергии. В 50 годы даже разрабатывались атомные автомобили, самолеты и поезда.

В результате работы ядерного реактора образуются радиоактивные отходы. Часть из них можно переработать для дальнейшего использования, часть приходится держать в специальных хранилищах, чтобы они не причинили вред человеку и окружающей среде.

Несмотря на это ядерная энергия сейчас является одним из самых экологически чистых. Атомные электростанции не производят выбросов в атмосферу, требуют очень мало топлива, занимают мало места и при правильном использовании очень безопасны.

Но после аварии на Чернобыльской АЭС многие страны приостановили развитие атомной энергетики. Хотя, например, во Франции почти 80 процентов энергии вырабатывается атомными электростанциями.

В двухтысячных из-за большой цены на нефть все вспомнили о ядерной энергии. Существуют разработки по компактным ядерным электростанциям , которые безопасны, могут работать десятилетими и не требуют обслуживания.

Принцип работы атомной электростанции и электростанций, сжигающих обычное топливо (уголь, газ, мазут, торф)одинаков: за счет выделяющегося тепла вода преобразуется в пар, который под давлением подается на турбину и вращает ее. Турбина, в свою очередь, передает вращение на генератор электрического тока, который преобразует механическую энергию вращения в электрическую энергию, то есть генерирует ток. В случае тепловых электростанций преобразование воды в пар происходит за счет энергии сгорания угля, газа и т. п., в случае АЭС - за счет энергии деления ядра урана-235.

Для преобразования энергии деления ядра в энергию водяного пара используются установки различных типов, которые получили название ядерных энергетических реакторов (установок). Уран обычно используется в виде диоксида - U0 2 .

Оксид урана в составе специальных конструкций помещают в замедлитель - вещество, при взаимодействии с которым нейтроны быстро теряют энергию (замедляются). Для этих целей используется вода или графит - соответственно этому реакторы называют водными или графитовыми.

Для переноса энергии (другим словом - тепла) от активной зоны к турбине используют теплоноситель - воду, жидкий металл (например, натрий) или газ (например, воздух или гелий). Теплоноситель омывает снаружи разогретые герметичные конструкции, внутри которых происходит реакция деления. В результате этого теплоноситель нагревается и, перемещаясь по специальным трубам, переносит энергию (в виде собственного тепла). Нагретый теплоноситель используется для создания пара, который под высоким давлением подается на турбину.

Рис.Ж.1. Принципиальная схема АЭС: 1 – ядерный реактор, 2 – циркуляционный насос, 3 – теплообменник, 4 – турбина, 5 – генератор электрического тока

В случае газового теплоносителя эта стадия отсутствует, и на турбину подается непосредственно нагретый газ.

В российской (в советской) атомной энергетике получили распространение два типа реакторов: так называемые Реактор Большой Мощности Канальный (РБМК) и Водо-Водяной Энергетический Реактор (ВВЭР). На примере РБКМ рассмотрим принцип работы АЭС чуть более подробно.

РБМК

РБМК является источником электроэнергии мощностью 1000 МВт, что отражает запись РБМК-1000. Реактор размещается в железобетонной шахте на специальной опорной конструкции. Вокруг него, сверху и снизу расположена биологическая защита (защита от ионизирующего излучения). Активную зону реактора заполняет графитовая кладка (то есть определенным образом сложенные блоки графита размером 25x25x50 см) цилиндрической формы. По всей высоте сделаны вертикальные отверстия (рис. Ж.2.). В них помещают металлические трубы, называемые каналами (отсюда название «канальный»). В каналы устанавливают либо конструкции с топливом (ТВЭЛ - тепловыделяющий элемент), либо стержни для управления реактором. Первые называются топливными каналами, вторые - каналами управления и защиты. Каждый канал является самостоятельной герметичной конструкцией.Управление реактором осуществляется погружением в канал стержней, поглощающих нейтроны (для этой цели используются такие материалы, как кадмий, бор, европий). Чем глубже такой стержень входит в активную зону, тем больше нейтронов поглощается, следовательно, число делящихся ядер уменьшается, энерговыделение падает. Совокупность соответствующих механизмов называется системой управления и защиты (СУЗ).


Рис.Ж.2. Схема РБМК.

К каждому топливному каналу снизу подводится вода, которая подается в реактор специальным мощным насосом, - он называется главный циркуляционный насос (ГЦН). Омывая ТВС, вода вскипает, и на выходе из канала образуется пароводяная смесь. Она поступает в барабан-сепаратор (БС) - аппарат, позволяющий отделить (сепарировать) сухой пар от воды. Отделенная вода направляется главным циркуляционным насосом обратно в реактор, замыкая тем самым контур «реактор - барабан-сепаратор - ГНЦ - реактор». Он называется контуром многократной принудительной циркуляции (КМПЦ). Таких контуров в РБМК два.

Количество оксида урана, необходимого для работы РБМК, составляет около 200 тонн (при их использовании выделяется такая же энергия, как при сжигании порядка 5 миллионов тонн угля). Топливо «работает» в реакторе 3-5 лет.

Теплоноситель находится в замкнутом контуре, изолированном от внешней среды, исключая сколь-либо значимое радиационное загрязнение. Это подтверждается исследованиями радиационной обстановки вокруг АЭС как самими службами станций, так и контролирующими органами, экологами, международными организациями

Охлаждающая вода поступает из водоема около станции. При этом забираемая вода имеет естественную температуру, а поступающая обратно в водоем - примерно на 10°С выше. Существуют строгие нормативы по температуре нагрева, которые дополнительно ужесточаются с учетом местных экосистем, но так называемое «тепловое загрязнение» водоема является, вероятно, самым значимым экологическим ущербом от атомных электростанций. Этот недостаток не является принципиальным и непреодолимым. Чтобы избежать его, наряду с водоемами-охладителями (или вместо них) используются градирни. Они представляют собой огромные сооружения в виде конических труб большого диаметра. Охлаждающая вода, после нагрева в конденсаторе, подается в многочисленные трубки, расположенные внутри градирни. Эти трубки имеют небольшие отверстия, через которые вода вытекает, образуя внутри градирни «гигантский душ». Падающая вода охлаждается за счет атмосферного воздуха и собирается под градирней в бассейне, откуда забирается для охлаждения конденсатора. Над градирней в результате испарения воды образуется белое облако.

Радиоактивные выбросы АЭС на 1-2 порядка ниже предельно допустимых (то есть приемлемо безопасных) значений, а концентрация радионуклидов в районах расположения АЭС в миллионы раз меньше ПДК и в десятки тысяч раз меньше природного уровня радиоактивности.

Радионуклиды, поступающие в ОС при работе АЭС, представляют собой в основном продукты деления. Основную часть из них составляют инертные радиоактивные газы (ИРГ), которые имеют малые периоды полураспада и потому не оказывают ощутимого воздействия на окружающую среду (они распадаются раньше, чем успевают воздействовать). Кроме продуктов деления некоторую часть выбросов составляют продукты активации (радионуклиды, образовавшиеся из стабильных атомов под действием нейтронов). Значимыми с точки зрения радиационного воздействия являются долгоживущие радионуклиды (ДЖН, основные дозообразующие радионуклиды - цезий-137, стронций-90, хром-51, марганец-54, кобальт-60) и радиоизотопы йода (в основном йод-131). При этом их доля в выбросах АЭС крайне незначительна и составляет тысячные доли процента.

По итогам 1999 года выбросы радионуклидов на АЭС по инертным радиоактивным газам не превышали 2,8% допустимых значений для уран-графитовых реакторов и 0,3% - для ВВЭР и БН. По долгоживущим радионуклидам выбросы не превышали 1,5% допустимых выбросов для уран-графитовых реакторов и 0,3% - для ВВЭР и БН, по йоду-131, соответственно, 1,6% и 0,4%.

Важным аргументом в пользу ядерной энергетики является компактность топлива. Округленные оценки таковы: из 1 кг дров можно произвести 1 кВт-ч электроэнергии, из 1 кг угля - 3 кВт-ч, из 1 кг нефти - 4 кВт-ч, из 1 кг ядерного топлива (низкообогащенного урана) -300 000 кВт-ч.

Атомный энергоблок мощностью 1 ГВт потребляет примерно 30 тонн низкообогащенного урана в год (то есть примерно один вагон в год). Для обеспечения года работы такой же по мощности угольной электростанции необходимо около 3 миллионов тонн угля (то есть около пяти железнодорожных составов в день ).

Выбросы долгоживущих радионуклидов угольной или мазутной электростанций в среднем в 20-50 (а по некоторым оценкам в 100) раз выше, чем АЭС такой же мощности.

Уголь идругие ископаемые виды топлива содержат калий-40, уран-238, торий-232, удельная активность каждого из которых составляет от нескольких единиц до нескольких сотен Бк/кг (и, соответственно, такие члены их радиоактивных рядов, как радий-226, радий-228, свинец-210, полоний-210, радон-222 и другие радионуклиды). Изолированные от биосферы в толще земной породы, при сжигании угля, нефти и газа они освобождаются и выбрасываются в атмосферу. Причем это в основном наиболее опасные с точки зрения внутреннего облучения альфа-активные нуклиды. И хоть природная радиоактивность угля, как правило, относительно невысока, количество сжигаемого топлива на единицу произведенной энергии колоссально.

В результате дозы облучения населения, проживающего вблизи угольной электростанции (при степени очистки дымовых выбросов на уровне 98-99%) больше , чем дозы облучения населения вблизи АЭС в 3-5 раз .

Кроме выбросов в атмосферу необходимо учитывать, что в местах концентрирования отходов угольных станций наблюдается значительное повышение радиационного фона, которое может приводить к дозам, превышающим, предельно допустимые. Часть естественной активности угля концентрируется в золе, которая на электростанциях накапливается в огромных количествах. При этом в пробах золы Канско-Ачинского месторождения отмечаются уровни более 400 Бк/кг. Радиоактивность летучей золы донбасского каменного угля превышает 1000 Бк/кг. И эти отходы никак не изолированы от окружающей среды. Производство ГВт-года электроэнергии за счет сжигания угля приводит к попаданию в окружающую среду сотен ГБк активности (в основном альфа).

Такие понятия, как «радиационное качество нефти и газа», стали привлекать серьезное внимание сравнительно недавно, тогда как содержание природных радионуклидов в них (радия, тория и других) могут достигать значительных величин. Например, объемная активность радона-222 в природном газе в среднем от 300 до 20 000 Бк/м 3 при максимальных значениях до 30 000-50 000. И таких кубометров Россия добывает в год почти 600 миллиардов.

Следует все же отметить, что радиоактивные выбросы как АЭС, так и ТЭС, не приводят к заметным последствиям для здоровья населения. Даже для угольных станций - это третьестепенный экологический фактор, который по значимости существенно ниже других: химических и аэрозольных выбросов, отходов и проч.

ПРИЛОЖЕНИЕ З

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.

Статьи по теме: